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Abstract—We study the problem of fine-grained sketch-based
image retrieval. By performing instance-level (rather than
category-level) retrieval, it embodies a timely and practical
application, particularly with the ubiquitous availability of touch-
screens. Three factors contribute to the challenging nature of
the problem: (i) free-hand sketches are inherently abstract and
iconic, making visual comparisons with photos difficult, (ii)
sketches and photos are in two different visual domains, i.e. black
and white lines vs. color pixels, and (iii) fine-grained distinctions
are especially challenging when executed across domain and
abstraction-level. To address these challenges, we propose to
bridge the image-sketch gap both at the high-level via parts and
attributes, as well as at the low-level, via introducing a new
domain alignment method. More specifically, (i) we contribute
a dataset with 304 photos and 912 sketches, where each sketch
and image is annotated with its semantic parts and associated
part-level attributes. With the help of this dataset, we investigate
(ii) how strongly-supervised deformable part-based models can be
learned that subsequently enable automatic detection of part-level
attributes, and provide pose-aligned sketch-image comparisons.
To reduce the sketch-image gap when comparing low-level
features, we also (iii) propose a novel method for instance-level
domain-alignment, that exploits both subspace and instance-level
cues to better align the domains. Finally (iv) these are combined
in a matching framework integrating aligned low-level features,
mid-level geometric structure and high-level semantic attributes.
Extensive experiments conducted on our new dataset demonstrate
effectiveness of the proposed method.

Index Terms—Sketch-based Image Retrieval, Instance-level,
Subspace alignment, Fine-grained, Cross-modal, Dataset.

I. INTRODUCTION

Sketches are intuitive and descriptive. They are one of the
few means for non-experts to create visual content. As a
query modality, they offer a more natural way to provide
detailed visual cues than pure text. Closely coupled with
the proliferation of touch-screen devices and availability of
large scale free-hand sketch datasets [1], sketch-based image
retrieval (SBIR) now has tremendous application potential.

Traditional computer vision methods for SBIR mainly focus
on category-level retrieval, where intra-category variations are
neglected. This is not ideal, since if given a specific shoe
sketch (e.g., high-heel, toe-open) as query, it can return any
shoe, including those with different part semantics (e.g., a flat
running shoe). Thus fine-grained sketch-based image retrieval
(FG-SBIR) is emerging as a way to go beyond conventional
category-level SBIR, and fully exploit the detail that can be
conveyed in sketches. By providing a mode of interaction that
is more expressive than the ubiquitous browsing of textual
categories, fine-grained SBIR is more likely to underpin
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Fig. 1. Conventional SBIR operates at category-level, but fine-grained SBIR
considers subtle details to provide instance-level retrieval. We propose a part-
aware learning approach to train our semi-semantic representations based on
a new large-scale fine-grained SBIR dataset of shoes. (Best viewed in color.)

any practical commercial adoption of SBIR technology. For
example, when one spots someone wearing a pair of shoes
they really like but could not take a photo, instead of typing
in textual descriptions which are both tedious and ambiguous,
they could sketch their mental recollection of that shoe instead
– FG-SBIR will find them the best matched pair of shoes, yet
SBIR will return any shoe (which essentially renders sketching
unnecessary since typing in the keyword ‘shoe’ into any text-
based image retrieval engine will suffice). Figure 1 contrasts
our fine-grained SBIR with traditional category-level SBIR
systems.

Fine-grained SBIR is challenging due to: (i) Free-hand
sketches1 are highly abstract and iconic, e.g., sketched objects
do not accurately depict their real-world image counterparts.
(ii) Sketches and photos are from inherently heterogeneous
domains, e.g., sparse black line drawings with white back-
ground versus dense color pixels, potentially with background
clutter. (iii) Fine-grained correspondence between sketches
and images is difficult to establish, especially given the abstract
and cross-domain nature of the problem. Above all, there is
no purpose-built fine-grained SBIR dataset to drive research,
which is why we contribute a new FG-SBIR dataset to the
community.

There exist significant prior work [2], [3], [4], [5], [6],
[7] on retrieving images or 3d models based on sketches,
typically with Bag Of Words (BOW) descriptors or advances

1A free-hand sketch is drawn without a refrence object or photo of the
object present during drawing. The sketcher has to rely on either a mental
recollection of the object seen before, or just the name of the object category.
In the context of FG-SBIR, we focus on the former, i.e., without reference at
hand but with recollection in memory.
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thereof. Although BOW approaches are effective and scalable,
they are weak at distinguishing fine-grained variations as they
do not represent any semantic information, and suffer from
sketch-image domain shift. Semantics: Recently, approaches
to fine-grained SBIR have included Deformable Parts Model
(DPM)-based part modeling in order to retrieve objects in
specific poses [8]. However, for practical SBIR in commercial
applications, we are more interested in distinguishing subtly
different object sub-categories or attributes rather than poses.
Attributes have recently been used to help drive fine-grained
image retrieval by identifying subtle yet semantic properties
of images [9], [10]. Moreover, such attributes may provide
a route to bridge the sketch/image semantic gap, as they
are domain invariant if reliably detected (e.g., a high-heel
shoe is ‘high-heel’ regardless if depicted in an image or
sketch). However, they suffer from being hard to predict due
to spurious correlations [11]. Domain Shift: Low-level feature
encodings, whether conventional Histogram of Oriented Gra-
dients (HOG)-BOW or deep features suffer from domain shift
across the sketch-image domains, thus significantly reducing
matching accuracy. Aiming to address this, there is extensive
work on domain-adaptation such as subspace alignment [12],
[13] – typically used to transfer a within-domain classifier to
another domain; and cross-domain projections [14], [15], [16],
[17], [18], [19], [20] – typically used for cross-domain match-
ing. Instance-level Alignment: Yet all prior work on domain
alignment operate on category-level, consequently making
them not directly applicable to the fine-grained instance-level
retrieval task in hand – fine-grained SBIR. In this work, we
propose an instance-level domain alignment method that is
specifically designed for fine-grained SBIR. More specifically,
we reduce the instance-level sketch-image gap by combining
the favorable properties of subspace based domain-adaptation
and instance-based projection methods. Finally, we bring the
fine-grained feature alignment and high-level semantic match-
ing strategies together to provide effective FG-SBIR.

To address the domain gap at a high semantic level we
work with parts and attributes. We define a taxonomy of 13
discriminative attributes commonly possessed by shoes, and
acquire a large fine-grained SBIR dataset of free-hand shoe
sketches with part-level attribute annotations. We then propose
a part-aware SBIR framework that addresses the fine-grained
SBIR challenge by identifying discriminative attributes and
parts, and then building a representation based on them.
Specifically, we first train strongly-supervised deformable part-
based model (SS-DPM) to obtain semantic localized regions,
followed by low-level features (i.e., HOG) extraction, geomet-
ric part structure extraction (mid-level) and semantic attribute
prediction (high-level). To address the domain gap at the level
of low-level features, we propose a novel fine-grained domain
alignment method that searches for an alignment that both (i)
robustly aligns the domains’ subspaces to make them directly
comparable, as well as (ii) provides fine-grained instance level
alignment across the domains. At retrieval time, based on these
strategies to align the domains at both high and low-levels, we
can simply apply nearest neighbour matching to to retrieve
images most similar to the probe sketch. We demonstrate the
superiority of our framework on FG-SBIR through in-depth

comprehensive and comparative experiments.
The contributions of our work are:
• We contribute a FG-SBIR shoe dataset with free-hand

human sketches and photos, as well as fine-grained
attribute annotations.

• We propose a part-aware paradigm that allows FG-SBIR
attribute detection.

• A novel instance-level cross-modal domain alignment
method is developed to robustly and accurately bridge
the domain gap by requiring both subspace and instance-
level alignment.

• Bringing these components together, we demonstrate that
exploiting representation at both low-and high levels
provides significantly improved FG-SBIR performance.

II. RELATED WORK

1) Sketch-based Image Retrieval: Text-based queries can
be efficient by using keyword tags to indicate the presence
of salient objects or concepts. However, it can become cum-
bersome when describing visual appearance such as complex
object shape or style and imprecise due to wide demographic
variations. Instead, a simple free-hand sketch can speak for a
“hundred” words without any language ambiguity and provide
a far more expressive means of image search. Despite some
success [5], all assume pixel-level matching, making them
highly sensitive to alignment (and in turn work only with
relatively accurate sketches). [4] conducted comparative and
comprehensive experiments by evaluating traditional low-level
feature descriptors (e.g., SIFT, HOG, Shape Context, etc.)
performance on SBIR, which demonstrated the cross-domain
limitations of hand-crafted state-of-the-art image-based de-
scriptors.

In order to address scalability, Cao et al [3] propose an
edgel (edge pixel) structure to organize all database images.
Their approach heavily relies on an edgel dictionary for
the whole database, where each entry is represented by an
edgel and several orientations. They measure sketch-image
pair similarity by indexable oriented chamfer matching, which
makes it vulnerable to scale or orientation variance. Zhou et
al [21] try to find the most salient part of an image in order to
localize the correct region under cluttered background and do
retrieval of a probe sketch based on this. However, determining
saliency is a very hard problem and the accuracy of even
the state-of-the-art saliency methods in natural images is low
[22]), thus liming its reliability in practice.

Existing work tailored for fine-grained SBIR is quite limited
[8], [23]. [8] uses a DPM to represent objects in sketch
and image domain, followed by graph-matching to establish
correspondence. However, this is designed for matching object
pose rather than fine-grained object details. [23] employs a
multi-branch deep neural network to learn a representation that
bridges sketch-image gap, at the instance level. Although very
successful, the scalability is limited in practice by the need
to manually annotate O(N3) triplets, and the computational
requirements of training them; we show that our fine-grained
domain alignment method performs comparably or better
to [23] while having much more reasonable annotation and
computational requirements.
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Fig. 2. (a) Proposed taxonomy of 13 part-aware attributes; different to conventional attributes defined at image-level, ours are localized within four semantic
parts of a shoe, (b) Per-attribute retrieval result, where a leave-one-out strategy is implemented; it shows each attribute contributes to shoe discrimination.

2) From Retrieval to Fined-grained Retrieval: There has
been extensive research [24], [25], [26], [27] on category-
level image retrieval. A common approach is to first extract
features like SIFT and HOG, and then learn image similarity
models on top of these. However, the performance is largely
limited by the representation power of hand-crafted features.
And importantly, this approach is not effective for fine-grained
retrieval, which requires distinguishing subtle differences be-
tween images within the same category. Yu et al. [10] for the
first time explore fine-grained visual comparisons by applying
a local learning approach based on relative attributes [28], like
“the suspect is taller than him”, “the shoes I want to buy
are like these but more masculine”. Inspired by this, Wang
et al. [29] proposed a deep ranking model that learns fine-
grained image similarity directly from images via learning
to rank with image triplets. Despite some early success the
problem remains largely unsolved, especially in terms of how
they can be extended to work cross-domain as for the case of
SBIR.

3) Fined-grained Attributes: Describing objects by their
attributes [30], [31], [32], [33] has gained tremendous research
attention recently, while comparatively little attention has been
dedicated to the detailed structure of objects, particularly from
a semantic viewpoint. Attributes capture information beyond
the standard phraseology of object categories, instances, and
parts, where fine-grained attributes further describe object
parts with more detail. To our knowledge, there are only a
few single-category datasets with fine-grained attribute anno-
tations, for example, datasets related to detailed descriptions
of birds [34], aircraft [35], and clothes [36]. We push this
envelope by proposing a new dataset of fine-grained shoe
attributes, not only on images but sketches as well.

4) Cross-Modal Alignment: Cross-modal alignment has
drawn increasing attention due to the growing prevalence
of multi-modal data. Three types of approaches can be
identified according to which type of supervision they use:
instance-level, category-level, or unsupervised. Instance-level:
Canonical Correlation Analysis (CCA) [14], Partial Least
Square (PLS) [16] and Bilinear Model (BLM) [37] are popu-
lar approaches that aim to map corresponding images from
different modalities (e.g., sketch and photo) to a common
subspace where corresponding instances are highly correlated.
Category-level: Sharma et. al. [19] proposed Generalized

Multi-view Linear Discriminant Analysis (GMLDA) and Gen-
eralized Multi-view Marginal Fisher Analysis (GMMFA) as
the multi-view counterparts of Linear Discriminant Analysis
(LDA) and Marginal Fisher Analysis (MFA), respectively.
Learning Coupled Feature Spaces for Cross-modal Matching
(LCFS) [20] learns a low-rank projection to select relevant
features for projecting across domains. These methods addi-
tionally use category-level supervision. For example, to say
that in the learned space, same-category images should be near
and different-category images should be far. Unsupervised:
Unsupervised methods such as Domain Adaptation Subspace
Alignment (DA-SA) [13] and Transfer Joint Matching (TJM)
[38] aim to align domains without using class labels or
instance pairs via subspace or maximum mean discrepancy
(MMD)-based alignment. Recently, Xu et. al. [39] performed a
comparative study of different cross-modal alignment methods
on the FG-SBIR task, and found LCFS and CCA to be the
most effective existing methods.

5) Cross-Modal Alignment for Fine-Grained Retrieval:
For FG-SBIR we are interested in intra-category retrieval:
finding that specific shoe that you saw, not finding shoes
instead of chairs. Thus exploiting category-level supervision
in alignment is less relevant. Instance-level and unsupervised
methods can be applied. But the former misses the holistic
cue from the whole dataset distribution, and the latter misses
the fine-grained detail of instance-level correspondence. Our
contribution is therefore to propose a ‘fine-grained subspace
alignment’ (FG-SA) method that exploits both the holistic
dataset-level alignment intuition used by methods such as
DA-SA along with the specific instance-level matching used
by methods such as CCA and PLS. However, unlike typical
instance-level methods like CCA/PLS which only require that
corresponding instances are highly correlated, we explore
using instance level cues discriminatively: to also require that
mismatching instances should be dissimiliar, i.e., similar to
the class-separability intuition used by some category-level
methods but applied to individual instance correspondences.

III. A FINE-GRAINED SBIR DATASET

In this section, we describe the collection of our fine grained
shoe SBIR dataset with 304 images and 912 free-hand human
sketches. Each image has three sketch correspondings to vari-
ous drawing styles. Inspired by [1], we propose the following
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criteria for the free-hand sketches and their corresponding
photo images collected in our dataset:
Exhaustive The images in our dataset cover most subcate-
gories of shoes commonly encountered in day life.
Discriminative The shoe itself is unique enough and pro-
vides enough visual cues to be differentiated from others.
Practical The sketches are drawn by non-experts using their
fingers on a touch screen, which resembles the real-world
situations when sketches are practically used.

A. Defining a Taxonomy of Fine-grained Shoe Attributes

Attribute Discovery To identify a comprehensive list of
fine-grained attributes for shoes, we start by extracting some
from previous research on shoe images. Berg et al. [40] report
the eight most frequent words that people use to describe a
shoe, namely “front platform”, “sandal style round”, “running
shoe”, “clogs”, “high heel”, “great”, “feminine” and “appeal”.
Kovashka et al. [41] further augment the list with another
10 relative attributes. It is noteworthy that the attributes they
report are not particularly fine-grained in terms of locality and
granularity, when compared with part-based ones defined in
[35] for the category of airplanes. Some are functional (e.g.,
sporty) or aesthetic (e.g., shiny) descriptions which make them
fit to a typical attribute categorization paradigm. However, they
provide a starting point to enable us to collect a fine-grained
attribute inventory. We also mine the web (e.g., Amazon.com)
and social media to find more key words and hash tags that
people use to describe shoes, particularly those with higher
degrees of locality and granularity. This gives us an initial
pool of thirty fine-grained attributes.
Attribute Selection and Validation To determine which
attributes are most suitable for our fine-grained SBIR task,
we follow the “comparison principle” [35]. An attribute is
considered informative only if it can be used to discriminate
similar objects by pinpointing differences between them. This
provides us two criteria for attribute selection (i) We omit
shape or color-based attributes inappropriate to free-hand
human sketches. (ii) We omit any attributes that jeopardize
the overall retrieval accuracy when encoding both sketches and
photos in terms of ground-truth attribute vectors. The selection
criteria above leave us with 13 fine-grained shoe attributes,
which we then cluster accordingly to one of the four parts of
a shoe they are semantically attached to. Figure 2 illustrates
the selected attributes and their leave-one-out validation.
Collecting Images The images are collected from the pub-
licly available UT-Zap50K dataset [10] with 50,000 catalogue
shoe images from Zappos.com. From this, we choose a diverse
set of 304 shoes from across all the subcategories, paying
attention to including multiple inner detail variations.
Collecting Sketches using Crowdsourcing The main dif-
ficulties with collecting multiple sketches per image are:
(i) ensuring sufficient diversity of sketching styles, and (ii)
quality control on the sketches. To address this we use a
crowdsourcing procedure, where each participant views an
image, and draws the corresponding sketch including fine-
grained object detail by recall. Multiple participants allow us

to obtain different sketching styles for each image. Figure 3
illustrates the diversity of sketch styles obtained while being
in fine-grained correspondence to a given image. To control
the quality, each image was drawn by multiple workers and
for each image the top three best-drawn sketches were kept.
Annotation To annotate our final fine-grained SBIR dataset,
we again use crowdsourcing for both fine-grained attributes as
well as parts which we will later use for strongly-supervised
DPM training.

IV. METHODOLOGY

Our learning approach is based on augmenting low- and
mid-level feature representations with semantic attribute pre-
dictions that help distinguish subtle-but-important details [36],
[9] on a domain invariant way (Sec. IV-A). This is then
followed by enhancing these attributes to be part-aware
(Sec. IV-B), and then aligning the low-level feature views of
both sketch and image domains via both their instances and
subspaces (Sec. IV-C), and finally combining all three views of
the image to achieve robust and accurate matching (Sec. IV-D)
for better fine-grained SBIR.

A. Feature and Attribute Extraction

Low-level Feature Extraction Histogram of Oriented Gra-
dients (HOG) is extracted from shoes in both image and sketch
domain. HOG is a ubiquitous descriptor that describes gradient
information in a local patch. We extract HOG in a dense grid,
and use it as a low-level sketch/image representation. HOG
was previously shown to be the best general-purpose feature
representation for sketch [8], [4].
Learning a High-level Attribute Detector Each training
sketch/image in our dataset is paired with attribute annotation.
For each domain, and for each attribute j we can train a
classifier aj(.) to predict the presence/absence of the attribute
given an image/sketch using a binary support vector machine
(SVM). The final attribute representation is then produced by
stacking classifier outputs into a single vector.

This strategy provides a domain invariant representation, but
when applied to raw HOG descriptors, attribute detection is
unreliable due to lack of alignment, and feature selection (most
of the input image is irrelevant to any given local attribute).
Thus we improve attribute detection by explicitly detecting
object parts.

B. A Part-aware Approach
Our part detection mechanism serves two purposes: (i) to

generate a graph-model to encode the geometry of a shoe, and
(ii) to support part-aware attribute detection.
Strongly-supervised Deformable Parts Model (SS-DPM)
Instead of using the traditional DPM [42] where objects
are represented by a coarse root HOG filter and several
latent higher resolution part filters, we adopt SS-DPM here
[43]. SS-DPM uses strong part-level supervision to improve
the initialisation of the latent-SVM model parts rather than
automatic heuristics. Unlike [8], which uses DPM for cross-
domain pose correspondence via graph matching, we only aim
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Fig. 3. Representative sketch-image pairs in our proposed fine-grained SBIR dataset, where each image has three corresponding free-hand sketches drawn
by different people. They highlight the abstract and iconic nature of sketches and differences in drawing ability among participants.
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Fig. 4. Why part-aware? We present some wrongly-detected attributes (red) when using whole image input, that have been corrected by our part-aware
approach. (e.g., sometime, a tiny raise on the heel part does not necessary mean a low-heel shoe, instead, it may just an upward continuation of the sole part,
which potentially makes it correlated with any attributes spatially in proximity of the shoe heels. Our part-aware approach can learn this subtlety semantically.)

to derive the appropriate shoe parts (bounding boxes), within
which we detect corresponding fine-grained attributes.

Mid-level Shoe Structure Representation To construct a
more abstract and modality invariant representation based
on shoe structure, we first need to detect shoe landmarks,
which are located by the strongly-supervised-DPM model
above. Then a bank of relative coordinates derived from
fully-connected graph model are used to represent our shoe
structure information. Specifically, given L localized shoe
landmarks (centre of the bounding boxes), a total of L⇥(L+1)

2
relative coordinates denoted s(x) are calculated by pairwise
L2 to provide a mid-level structure representation encoding
the geometry via distances between pairs of key features on
the shoe.

Part-aware Attribute Detection Once individual parts have
been detected, these can be used to improve attribute detection
compared to the holistic procedure outlined in Sec IV-A.
Specifically, each attribute is associated with a localized shoe
part (Fig. 2), thus only the features from within the window
of the detected part are used to predict the presence of
that attribute. This requires the attribute detector to use the
relevant cue and not inadvertently learn to detect irrelevant
but correlated features from other parts [11]. In this way we
achieve de-correlated attribute learning that generalizes better
at testing time, and in turn more accurate attribute detection
accuracy that improves consequent retrieval performance.

Why Part-aware? Our goal is to learn attribute classifiers

that fire only when the corresponding semantic property is
present. In particular, we want them to generalize well even
when: (i) human free-hand sketches vary in shapes, scales, and
width-height ratios. (ii) attribute co-occurrence patterns may
differ from what is observed in training. The intrinsic pixel-
oriented nature of SVM applied on a global feature means
that it is prone to learn the wrong thing, even if it achieves
high training accuracy. E.g., it may learn the properties that are
correlated with the attribute of interest, rather than the attribute
itself; and thus suffer if these correlations change at test
time. In contrast, our part-aware model helps to achieve de-
correlation and improve generalisation by detecting attributes
on specific corresponding parts (details in Fig. 4).
Summary The method thus far provides a view of sketches
and photos which is modality invariant by design due to encod-
ing via accurately detected high-level attributes. Nevertheless,
this high-level information alone is insufficient to discriminate
all fine-grained sketch-image comparisons: either because of
outstanding imperfections in attribute detection, or because
multiple shoes share a given attribute vector encoding. Thus
we next turn to cross-modal alignment of low-level features
in order to complement our high-level representation above.

C. Fine-grained Subspace Alignment
In this section, we detail our domain-alignment method

which aligns the low-level feature (HOG) views of sketch and
image domains in terms of both subspaces and fine-grained
instance pairs.
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Subspace Generation We represent every sketch and image
as a D-dimensional z-normalized vector (i.e. zero mean). Thus
fI and fS 2 RN⇥D are the matrices stacking all N images in
each modality, with fiI (fiS) denoting the i-th row in fI (fS).
Using Principal Component Analysis (PCA), we then generate
a subspace for each domain, represented by the d eigenvectors
corresponding to the d largest eigenvalues. These subspaces
are denoted by XI and XS (XI ,XS 2 RD⇥d), and they are
orthonormal (XT

SXS = Id and XT
I XI = Id, where Id is identity

matrix of size d). We next align the subspaces XI and XS of
the two domains.
Domain-level Subspace Alignment Fernando et al. [13]
proposed to align subspaces XI and XS to make data in each
domain (fiS and fiI ) more comparable. To align the subspaces,
a d⇥d transformation matrix M is learned by minimizing the
following Bregman matrix divergence:

F1(M) = kXIM � XSk2F (1)

where k.k2F is the Frobenius norm. The transformation learned
in Eq. 1 robustly aligns the axes of variation of the two
domains, making them more comparable. However it does not
exploit available information of sketch-photo correspondences.
Instance-level Subspace Alignment In contrast to domain-
adaptation approaches that often operate on subspaces, cross-
modal matching problems such as fine-grained SBIR search
for projections that bring individual instances into correspon-
dence. This is because the often subtle visual and struc-
tural differences on fine-grained research tasks can not be
effectively distinguished using domain-level subspaces. As a
result, one needs to take instance-level feature into consider-
ation. Let’s denote fiIXIM, and fiSXS as the i-th image and
sketch instance projection feature respectively, and writing as
fiIXIM�fiSXS the difference of transformed i-th image-sketch
pair. We additionally optimize the l2,1 norm of pair distances:

F2(M) =
NX

i=1

��fiIXIM � fiSXS

��
2
. (2)

Optimizing this l2,1-norm is more robust to outlying instances
than conventional F -norm [44], so if some badly drawn
sketches are impossible to align with their corresponding
image, then the detriment to the learned mapping is small.
Discriminative Instance-level Subspace Alignment The
method introduced in Eq. 2 minimizes the distances between
corresponding photo-sketch pairs, but better results may be
achieved if we further prefer a discriminative alignment where
the distances between matching pairs are smaller than those
between mismatching photo-sketch pairs – an intuition widely
exploited in metric learning [45], [46]. To exploit this stronger
constraint, we optimise the difference between the average l2,1

distances of corresponding and mismatching pairs:

F2(M) =
PN

i=1

��fiIXIM � fiSXS

��
2

�� ⇤ 1
N

PN
i=1

PN
j=1

���fjIXIM � fiSXS

���
2

(3)

The above constraint requires that matching pairs are closer
than mismatching pairs on average, but even if this constraint
is met there could be many individual examples for which

mismatching photos and sketches are closer than matching
ones. A stronger version of the constraint is therefore to
require that each individual positive pairing is closer than all
alternative negative pairings:

F2(M) =
1

N
⇤

NX

i=1

NX

j=1

[
��fiIXIM � fiSXS

��
2

�
���fjIXIM � fiSXS

���
2
]+ (4)

where [.]+ is hinge loss. Optimising the transformation M
in this formula guarantees that for each sketch, the differ-
ence between matching image-sketch pair is less than any
mismatching pairing. That is, when the loss F2(M) (Eq. 4)
reaches zero, the training set has 100% matching accuracy.
However, as this is a much harder constraint to meet compared
to Eq. 3, it is possible that more overfitting occurs, so the
testing performance is not necessarily better than that of Eq. 3.
Simultaneously Aligning Subspaces and Instances Our
overall objective is to improve cross-domain matching by com-
bining subspace alignment and instance alignment intuitions.
To this end we explore three method variants corresponding
to the three instance-alignment options proposed in Eqs. 2-4.
These are to minimize the loss F (M) in the following:
Fine-grained Subspaces Alignment Method 1:

F (M) = kXIM � XSk2F + � ⇤
NX

i=1

��fiIXIM � fiSXS

��
2

(5)

Fine-grained Subspaces Alignment Method 2:

F (M) = kXIM � XSk2F + � ⇤
PN

i=1

(
��fiIXIM � fiSXS

��
2
� 1

N

PN
j=1

���fjIXIM � fiSXS

���
2
) (6)

Fine-grained Subspaces Alignment Method 3:

F (M) = kXIM � XSk2F + � ⇤ ( 1
N ⇤

PN
i=1

PN
j=1

[
��fiIXIM � fiSXS

��
2
�

���fjIXIM � fiSXS

���
2
]+) (7)

More specifically, Eq. 5 performs domain-level alignment
while minimizing pair-wise distances between sketch-photo
pairs after projection (Eq. 2); Eq. 6 additionally takes into
account mismatching pairs by enforcing average distance
between matching pairs to be smaller than those between
mismatching pairs (Eq. 3); finally, Eq. 7 further constrains
instance-level alignment by asking all positive pairs to be
closer than all negative pairs (Eq. 4).

The objectives in Eqs. 5-7 can be optimized by stochastic
gradient descent. But the l2,1 distance means the losses have
many non-differentiable points, requiring optimization by sub-
gradient. The optimization procedure is summarized in Algo-
rithm 1.

D. Matching Procedure
Given the high-level representation and low-level alignment

learned in Sec. IV-A-IV-C, we can effectively match sketches
and photos as follows. For a given image and sketch i and j we
project their low-level features into their respective subspaces,
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and align the images with the sketches, obtaining the new
representations: Ri

I = fiIXIM and Rj
S = fjSXS . We also obtain

part-based attribute a(·) and geometry s(·) information from
Section IV-A and Section IV-B. Combining these three views,
we quantify the distance between pair i and j as:

D(i, j) =
���Ri

I � Rj
S

���
2
+ w1 ⇤

���a(fiI)� a(fjS)
���
1

+w2 ⇤
���s(fiI)� s(fjS)

���
2

(8)

where w1, w2 are the weighting factors allocated for the 3
views, obtained by a greedy search.

V. EXPERIMENTS

A. Experimental settings

In the first set of experiments, we focus on evaluating
attribute detection accuracy, the significance of detecting part
localised attributes, and compare overall matching perfor-
mance using our basic fine-grained subspace alignment (FG-
SA) Method 1 to a wide variety of prior cross-modal matching
work.
Datasets We perform experiments on three fine-grained
SBIR datasets:

• 912 shoe sketch database: This is the database presented
in this work and used in earlier experiments [47]. We
perform 3-fold cross validation, and report average result
over 10 random splits.

• 419 Shoes and 297 Chairs database [23]: We use the
same shoe and chair FG-SBIR datasets introduced by
[23]. We follow their experiment setup and use 304 pairs
of shoes and 200 chairs for training, with the rest for
testing.

• Sketchy [48]: The most recent and largest fine-grained
SBIR dataset consisting of 74,425 sketches and 12,500
gallery photos spanning 125 categories. In each category,
there are 100 object instances, and each instance has one
photo and 5 or more corresponding sketches. We use the
same training dataset and testing dataset introduced by
[48], with the same 90/10 train/test split.

Preprocessing We first perform simple preprocessing to
alleviate misalignment due to scale, aspect ratio, and centering.
We downscale the height of the bounding boxes for both
sketches and images to a fixed value of pixels while retaining
their original aspect ratios. Then we place the downscaled
sketches and images at the centre of a 128 ⇤ 256 blank canvas
with rest padded by background pixels.
Low-Level Features For holistic low-level feature represen-
tation, we densely extract HOG on sketches and images on a
16⇥ 16 grid, resulting in D = 4608 dimensional descriptor.

For part-level features required for fine-grained attribute
detection, we constrain each part to be placed within a
bounding box (size 64⇥64 patch for ‘toe-cap’, ‘body’, ‘body’
and ‘heel’ parts; and a 128⇥ 64 patch for ‘boot’ part) before
performing the same 16⇥ 16 dense grid feature extraction as
we do holistically. This results in D = 576, 576, 576, 1152
dimensional part descriptors respectively.

Input: fI , fS 2 R
N⇤D

XI ,XS 2 R
D⇤d

step size: ↵
Output: M 2 R

d⇤d

1 Let t = 1,Initialize Mt = XT
I XS

2 while F (Mt)� F (Mt+1) > 0.01 do
3 Calculate the block diagonal matrices

Bt 2 N ⇤N ,where the i-th diagonal block of Bt is
1

2 2
q
kfiIXIMt�fiSXSk2

2
+⇣

Ij ,where ⇣ ! 0.

4 Calculate a series of diagonal matrices E
j 2 N ⇤N ,

where j 2 [1, N ].The i-th diagonal block of Ej is
1

2 2
q
kfjIXIMt�fiSXSk2

2
+⇣

Ij .

5 Calculate the diagonal matrix Q 2 N ⇤N , the j-th
diagonal block of Q is

��Ej
��
1
. Calculate matrix

P 2 N ⇤N , the j-th row i-th column element of P
is 1

2 2
q
kfjIXIM�fiSXSk2

2
+⇣

.

6 For Method 1: @F (Mt)
@M = (XT

I XI + � ⇤
(fIXI)TBtfIXI)Mt � (XT

I XS + �(fIXI)TBtfSXS).
For Method 2:
@F (Mt)

@M = (XT
I XI + � ⇤ ((fIXI)TBfIXI �

1
N (fIXI)TQfIXI))Mt � (XT

I XS + � ⇤
((fIXI)TBfSXS � 1

N (fIXI)TP fSXS)).
7 For Method 3: For each i 2 [1, ..., N ], calculate

hi 2 [hmin, ..., hmax], where��fiIXIM � fiSXS

��
2
�

���fhi
I XIM � fiSXS

���
2
> 0. hl

is the length of [hmin, ..., hmax]
8 Calculate a series of diagonal matrices E

hi
h 2 N ⇤N ,

where hi 2 [hmin, ..., hmax].The i-th diagonal block
of Ehi

h is 1

2 2

r���fhi
I XIM�fiSXS

���
2

2
+⇣

Ihi .

9 Calculate the diagonal matrix Qh 2 hl ⇤ hl , the i-th
diagonal block of Qh is

���Ehi
h

���
1
.

10 Calculate the matrix Ph 2 hl ⇤N , the j-th row i-th
column element of P is 1

2 2
q
kfjIXIM�fiSXSk2

2
+⇣

,where

j 2 [hmin, ..., hmax], i 2 [1, N ].
11 fhI 2 hl ⇤D is a subset of fI , the i-th row of fhI is the

hi row of fI ,where hi 2 [hmin, ..., hmax].
12

@F (Mt)
@M = (XT

I XI + � ⇤ 1
N ⇤ (hl(fIXI)TBfIXI �

(fhI XI)TQhfhI XI))Mt � (XT
I XS + � ⇤ 1

N ⇤
(hl(fIXI)TBfSXS � (fhI XI)TPhfSXS))

13 Calculate Mt+1 = Mt � ↵
@F (Mt)

@M
14 t = t+ 1
15 end

Algorithm 1: An iterative gradient-descent algorithm to
solve the optimization problems in Eqs. 5, 6, 7

SS-DPM Training and Detection Each SS-DPM is set to
4 mixture components and 4 parts per component, which in
turn will deliver six relative coordinates for our shoe structural
information. Unlike [43], all shoes in our dataset share a
uniform pose without partial occlusions. During detection, we
choose the SS-DPM detection with the largest probability in



8

each image and sketch. We use publicly available packages
from [43] for full implementation with minor modifications.
In Fig. 7, we provide illustrations of part detection results on
a few sketches and images in our dataset.
Training Part-aware Attribute Detectors Using the 13
attribute taxonomy defined in Section III-A, and the training
procedure in Section IV-B, we produce a 13 dimensional
binary attribute vector for each image and sketch in the dataset.
Parameters There are four parameters w1, w2, d, � that
need to be tuned in our model: w1, w2 weight different
representations for late-fusion, d is dimension of the joint
subspace, and � trades off subspace and instance-alignment
when learning our fine-grained subspace alignment. w1, w2,
d and � are fixed in all experiments, and empirically set to
0.3, 0.05, and 0.8, respectively. d is dataset dependent, and
optimized using greedy search in the training set. We found
590, 400, 290, 190 and 890 to work well on 912-shoe dataset,
697-chair dataset, 419-Shoe [23], 297-Chair [23] and Sketchy
[48], respectively.
Baselines (Attribute Detection): We compare our SS-DPM
attribute detection to the conventional approach of using
holistic features (Whole-Image), and using ground-truth part
attributes as input (Ground-Truth Part). To verify that our
part-aware method decorrelates the attributes, we evaluate
against the state-of-the-art attribute decorrelation method intro-
duced in [11], where they use semantic groups to encourage
in-group feature sharing and between-group competition for
features through a lasso multi-task learning framework. We
compare with two variants of their method (i) similar to [11],
when holistic image-wide features divided into 6 regular grids
are used (Weakly-Supervised (WS)-Decor), and (ii) when
ground-truth part annotations are supplied to extract part-level
features (Strongly-Supervised (SS)-Decor). We also compare
performance of strongly-supervised DPM against the original
weakly-supervised DPM [42] which works without strong part
annotations at training (Weakly-Supervised (WS)-DPM).
Baselines (Cross-Modal Alignment): To evaluate our con-
tribution to aligning low-level features across domains, we
compare our proposed fine-grained subspace alignment (FG-
SA (Ours)) with several prominent cross-modal alignment
methods: LCFS [20], BLM [37], CCA [14], GMMFA,
GMLDA [19], and DA-SA [13]. DA-SA is exactly the same
as our domain-level subspace alignment method formulated in
Eq. 1. ILA is our pair instance alignment method defined in
Eq. 2. We adapt category-level methods (LCFS, GMMFA,
GMLDA) to our problem by treating each sketch/image pair
as an unique category label.
Baselines (Fine-grained SBIR): To evaluate our overall
system combining high-level attribute and low-level fea-
ture alignment components, we evaluate the following vari-
ants. To evaluate representations, we consider Part-HOG,
where part-level HOG is employed, Part-Attribute, where
only automatically detected part-aware attributes are utilized,
and Part-Structure, where geometric part structure alone is
used to retrieve. To evaluate parts vs global encodings we
consider: (i) GLLF+Our, where global HOG features are
aligned by our proposed FG-SA method 1. (ii) PLLF+CCA,

where part-level HOG features are projected into a com-
mon subspace using CCA. (iii) PLLF+Our where part-
level HOG features are aligned by our proposed FG-SA
method 1 and where only automatically detected part-aware
attributes are utilized. Combining all three-views we have:
GLLF+Part-Attribute+Part-Structure+Our, PLLF+Part-
Attribute+Part-Structure+Our; which we compare to an
earlier version of our work [47] denoted PLLF+Part-
Attribute+Part-Structure+CCA.

B. Attribute Detection
In this section, we evaluate our attribute-detection perfor-

mance on both domains. In Table I, we offer attribute detection
accuracy (three-fold cross-validation for ten random splits) for
our sketch/image datasets. Overall, although many attributes
are quite subtle, the average accuracies in the range 74%-
84% clearly demonstrate that many of them can be reasonably
reliably detected. We can also see that: (i) All part-aware
methods outperform whole-image, with the upper bound of
ground-truth attributes offering the best performance. This
justifies our contribution of part localization. (ii) Our method
outperforms the state-of-the-art decorrelation method [11] on
image and performs comparably on the more challenging
sketch domain. Note that [11] required strong part annotations
at testing, and our strongly-supervised DPM approach only
used part annotation during training. (iii) SS-DPM outperforms
the weakly-supervised alternative, again highlighting the im-
portance of accurate part localization.

C. Cross-modal Matching with Low-Level Features
In this section, we evaluate our proposed fine-grained sub-

space alignment (FG-SA) with other prominent cross-modal
or domain adaption methods on our proposed dataset, 419
Shoe dataset [23], 297 Chair dataset [23] and Sketchy [48].
Given each probe sketch, we retrieve K images, and define
a successful retrieval if there is a correct match within those
K images. From the CMC curves in Fig. 5(a),(b),(c),(d), we
can see that (i) Our FG-SA which simultaneously learns
cross-modality subspaces and aligns pair instances clearly
outperforms the others across all four datasets, (ii) ILA already
performs better than most category-level subspace alignment
methods, suggesting the importance of pair instance alignment
when it comes to fine-grained retrieval.

D. Fine-grained SBIR Performance Evaluation
Having evaluated our feature-alignment contribution, we

next evaluate our entire SBIR framework including aligned
low-level features and part-aware attributes (i.e., via Eq. (8)).
The overall results are illustrated by CMC curve in Fig. 6,
where we achieve an average of 60.89% @ K = 10, sig-
nificantly outperforming the result in [47]. In particular, we
make the observations: (i) The low-level feature alignment
performance of our FG-SA (PLLF+Our 44.13% @ K = 10)
is almost twice that of CCA (PLLF+CCA 25% @ K = 10),
(ii) part-aware subspace projection improves the performance
compared to global non-part aware projection (GLLF+Part-
Attribute+Part-Structure+Our 54.19% @ K = 10 versus
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Attribute Whole-Image WS-Decor [11] WS-DPM SS-Decor [11] Ours Ground-truth part

Round 90.33% 88.93% 90.96% 92.08% 93.92% 94.25%
Toe-open 90.33% 88.93% 90.96% 92.08% 93.92% 94.25%
Ornament or 65.45% 61.13% 66.39% 67.47% 70.32% 73.85%
brand on body
Shoelace 63.03% 65.38% 64.10% 64.87% 65.98% 70.89%
or ornament on vamp
Low heel 73.72% 70.74% 74.89% 73.11% 75.44% 77.25%
High heel 71.19% 77.60% 72.21% 78.90% 73.70% 76.72%
Pillar heel 82.64% 70.91% 82.50% 72.08% 85.13% 88.44%
Cone heel 63.71% 69.46% 64.11% 74.85% 67.53% 74.64%
Slender heel 82.76% 85.29% 84.02% 88.24% 86.54% 89.63%
Thick heel 88.24% 76.34% 88.89% 79.97% 91.38% 92.83%
Low boot 96.67% 90.94% 95.42% 95.82% 97.08% 98.04%
Middle boot 94.39% 87.91% 92.26% 91.67% 95.78% 96.92%
High boot 89.10% 88.98% 86.89% 91.41% 91.15% 93.23%
Average 80.89% 78.66% 81.05% 81.72% 83.68% 86.19%

Attribute Whole-Image WS-Decor [11] WS-DPM SS-Decor [11] Ours Ground-truth part

Round 80.80% 78.93% 80.14% 80.30% 81.22% 81.96%
Toe-open 80.80% 78.93% 80.14% 80.30% 81.22% 81.96%
Ornament or 54.91% 53.31% 56.81% 52.95% 60.12% 62.34%
brand on body
Shoelace 73.02% 66.90% 74.45% 70.96% 72.99% 73.89%
or ornament on vamp
Low heel 66.45% 63.20% 64.89% 64.21% 66.15% 74.29%
High heel 80.46% 79.86% 79.55% 81.24% 75.68% 83.29%
Pillar heel 69.86% 70.91% 67.89% 72.07% 76.00% 77.10%
Cone heel 59.79% 60.62% 60.12% 64.07% 63.10% 71.66%
Slender heel 78.51% 85.95% 76.87% 87.38% 79.71% 88.53%
Thick heel 69.93% 71.79% 65.21% 74.73% 70.60% 78.83%
Low boot 92.51% 87.49% 87.45% 87.70% 90.87% 94.04%
Middle boot 78.11% 77.74% 72.48% 79.65% 84.03% 85.51%
High boot 88.65% 86.32% 84.51% 88.98% 84.94% 90.32%
Average 74.91% 74.00% 73.12% 75.73% 75.89% 80.29%

TABLE I
ATTRIBUTE DETECTION USING OUR PART-AWARE METHOD AND OTHER PREVIOUS STATE-OF-THE-ART METHODS ON BOTH IMAGE (LEFT) AND

SKETCH (RIGHT) DOMAINS OUR METHOD GENERALLY PERFORMS BEST, WHERE SOME ATTRIBUTES ACTUALLY OUTPERFORM SS-DECOR. ONE
EXCEPTION IS THAT ON SKETCH HEEL PART, WHERE SS-DECOR OUTPERFORMS OURS. NOTE HOWEVER THAT SS-DECOR REQUIRED STRONG PART

ANNOTATION AT TESTING TIME, WHEREAS ONCE TRAINED OUR SS-DPMS WORK WITHOUT PART ANNOTATION AT TESTING.

PLLF+Part-Attribute+Part-Structure+Our 60.89% @ K = 10).
In Fig. 7, we present qualitative evidence that our part-aware
fine-grained SBIR method can capture subtle variations across
domains and deliver satisfying performance, e.g., in Row 5 our
method achieves more relevant photos than the whole image
approach by correctly matching the fine-grained details such
as open vs. closed heel, or high-heel vs. platform.

E. Analysis on Different Drawing Styles
1) Sketching Styles: As shown in Fig. 3, different sketches

completed by different annotators in our dataset have varying
levels of abstraction and deformation, or even different ex-
pressive interpretation on image-correspondence details. Thus,
in this section, we present a pilot study on how diverse
drawing styles could eventually affect our fine-grained SBIR
outcome. More specifically, at dataset generation, we divided
our participants into six groups, where each group is made
up of three individuals. Each group is given the same set
of images and draw a sketch for each images. Then some
other participants manually annotate the fine-grained attributes
that are present in each sketch and image. We examine and
explore the sketching style of different people within each
group through attribute-level SBIR, where the higher the
sketch quality, the better the retrieval result. As can be seen
in Table III, the performance of fine-grained SBIR can vary
dramatically due to different drawing styles across individuals.
This result further highlights the challenging nature of the
dataset and motivates future work to be carried out.

2) Sketchability of Attributes: Fine-grained Attributes are
critical for fine-grained SBIR performance. However, not
every annotator is a reliable sketcher and able to express
the subtlety conveyed in images. Thus, in this section, we
present a pilot study on how reliably users can convey fine-
grained attributes via sketches. Specifically, we address this by
digging into the attribute annotation on sketches and images
in our dataset. Annotation in each domain was independently
conducted by different workers. Assuming that workers can
reliably annotate image attributes, the mismatch of sketch
attribute annotations reflects the inability of users to sketch
the attributes of the corresponding image. Table II shows

the degree of annotation consensus across sketch-image pairs
broken down by attribute, thus quantifying the sketchability
of each attribute. These range from 76% at lowest (shoelace,
pillar heel) to 97% at best (low-boot). In Fig. 8, we illustrate
some challenging scenarios, where all the three users drawing
the same shoe failed to express a given fine-grained attribute,
according the annotators of the resulting sketches.

Round Toe-open Ornament or brand Shoelace or Low heel High heel Pillar heel
on body ornament on vamp

94.41% 94.41% 83.77% 76.43% 86.73% 86.40% 76.43%
Cone heel Slender heel Thick heel Low boot Middle boot High boot Average
80.15% 92.10% 79.93% 97.36% 87.50% 90.13% 86.60%

TABLE II
PERCENTAGE OF ATTRIBUTES WHERE HUMAN ANNOTATORS AGREE ON

SKETCH/IMAGE ATTRIBUTES. THIS SHOWS THAT SOME ATTRIBUTES ARE
HARD TO INTERPRET IN SKETCHES, EVEN BY HUMANS; THUS

ILLUSTRATING THE CHALLENGE OF THE fine-grained SBIR TASK.

Group Drawer 1 Drawer 2 Drawer 3

No. 1 80% 70% 67%
No. 2 69% 74% 80%
No. 3 62% 54% 74%
No. 4 73% 65% 73%
No. 5 71% 79% 63%
No. 6 70% 75% 72%

TABLE III
Fine-grained SBIR RESULTS GIVEN DIFFERENT DRAWING STYLES.

DRAWING STYLE CAN AFFECT THE RETRIEVAL RESULTS SIGNIFICANTLY.
THIS PROVES THAT OUR LEARNING TASK IS CHALLENGING DUE TO THE

UNRESTRICTED NON-EXPERT FREE-HAND SKETCHES.

F. Analysis on Different Drawing Styles
As shown in Fig. 3, sketches completed by different sketch-

ers in our dataset have various levels of abstraction and
deformation, or even different expressive interpretation on
image-correspondence details. Thus, in this section, we present
a pilot study on how diverse drawing styles could eventually
affect a fine-grained SBIR outcome. More specifically, at
dataset generation, we divide our participants into six groups,
where each group is made up of three individuals. Each group
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Fig. 5. CMC curves for fine-grained SBIR using low-level features only, compared with our proposed domain alignment method [Eq. 5] with alternatives on
(a) 912 shoe sketch database, (b) 419 shoes database [23], (c) 297 chair database [23] and (d) Sketchy [48].

912 Shoe dataset [47] acc.@1 acc.@10

Dense HOG + FG-SA-M1 9.84% 39.47%
Dense HOG + FG-SA-M2 8.88% 39.97%
Dense HOG + FG-SA-M3 8.22% 40.63%
ISN Deep + FG-SA-M1 8.55% 37.17%
ISN Deep + FG-SA-M2 9.38% 37.17%
ISN Deep + FG-SA-M3 8.39% 37.66%
Triplet Deep Learning [23] 8.06% 43.42%

TABLE IV
Fine-grained SBIR RESULTS. OUR fine-grained SUBSPACE ALIGNMENT

METHODS VERSUS TRIPLET DEEP LEARNING: 912 SHOE SKETCH DATASET
[47].

is given the same set of images and draw a sketch for each
images. Then some other participants manually annotate the
fine-grained attributes that are present in each sketch and
image. We examine and explore the sketching style of different

people within each group through attribute-level SBIR, where
the higher the sketch quality, the better the retrieval result. As
can be seen in Table III, the performance of fine-grained SBIR
can vary dramatically due to individuals’ drawing styles. This
result further highlights the challenging nature of the dataset
and motivates future work to be carried out on user-specific
modelling and/or developing style-robust models.

G. Further Evaluations on Alternative FG-SBIR Methods
Having previously evaluated against other cross-modal

matching paradigms, in this set of experiments, we focus
on (i) evaluating our three proposed variants for fine-grained
subspace alignment, (ii) studying the cross-modal performance
of our shallow approach compared with deep learning alter-
natives, and (iii) investigating our model performance against
dataset size.

We compare with two deep learning approaches on their
respective datasets where best results were reported: (i) a
recently proposed deep triplet network for fine-grained SBIR
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419 Shoe dataset [23] acc.@1 acc.@10

Dense-HOG + FG-SA-M1 42.61% 89.57%
Dense-HOG + FG-SA-M2 42.61% 86.09%
Dense-HOG + FG-SA-M3 44.35% 87.83%
ISN Deep + FG-SA-M1 46.96% 89.57%
ISN Deep + FG-SA-M2 51.30% 90.43%
ISN Deep + FG-SA-M3 44.35% 91.30%
Triplet Deep Learning [23] 39.13% 87.83%

297 Chair dataset [23] acc.@1 acc.@10

Dense-HOG + FG-SA-M1 79.38% 100%
Dense-HOG + FG-SA-M2 79.38% 100%
Dense-HOG + FG-SA-M3 71.13% 97.94%
ISN Deep + FG-SA-M1 76.29% 97.94%
ISN Deep + FG-SA-M2 76.29% 96.91%
ISN Deep + FG-SA-M3 71.13% 96.91%
Triplet Deep Learning [23] 69.07% 97.94%

TABLE V
Fine-grained SBIR RESULTS. OUR fine-grained SUBSPACE ALIGNMENT METHODS VERSUS TRIPLET DEEP LEARNING: 419 SHOE / 297 CHAIR DATASET

[23].
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GLLF+Our [Eq. 5]

PLLF+CCA

PLLF+Our [Eq. 5]

Part−Attribute

GLLF+Part−Attribute+Part−Structure+Our [Eq. 5]

PLLF+Part−Attribute+Part−Structure+CCA[41]

PLLF+Part−Attribute+Part−Structure+Our [Eq. 5]

Ground Truth

Fig. 6. CMC curves for the full fine-grained SBIR framework including
part-aware attributes and domain alignment.

697 Chairs dataset acc.@1 acc.@10

Dense HOG + FG-SA-M1 70.56% 97.97%
Dense HOG + FG-SA-M2 69.54% 97.97%
Dense HOG + FG-SA-M3 72.08% 98.98%
ISN Deep + FG-SA-M1 63.96% 91.88%
ISN Deep + FG-SA-M2 63.45% 93.40%
ISN Deep + FG-SA-M3 64.97% 93.91%
Triplet Deep Learning [23] 64.47% 90.36%

TABLE VI
Fine-grained SBIR RESULTS. OUR fine-grained SUBSPACE ALIGNMENT

METHODS VERSUS TRIPLET DEEP LEARNING: NEW 697 CHAIR DATASET.

[23] that yields state-of-the-art results on 419-Shoe and 297-
Chair [23]; and (ii) the heterogeneous triplet network based
on GoogleNet proposed by [48] that delivers the best retrieval
performance on the Sketchy dataset [48]. It is worth noting
that, for direct comparison to [23] and [48], we do not use
attributes and parts in this experimental section, nor utilize any
of the exhaustively labeled triplets used to train the network

Sketchy [48] acc.@1 acc.@10

GNT Deep + FG-SA-M1 42.85% 97.24
GNT Deep + FG-SA-M2 44.36% 97.18%
GNT Deep + FG-SA-M3 45.27% 98.20%
GN Triplet [48] 37.10% 95.53%

TABLE VII
Fine-grained SBIR RESULTS. OUR fine-grained SUBSPACE ALIGNMENT

METHODS VERSUS GN TRIPLET: SKETCHY [48].

in [23].
697 Chairs database To study the dependence of model
performance on dataset size, we enlarge the previous chair
database introduced by [23] to include an extra of 400 chair
sketch-image pairs, making a new total of 697.
Low-Level Features In this experiment we use a holistic
low-level feature representation obtained by densely extracting
HOG on sketches and images on a 32⇥ 32 grid, resulting in
a 2304 dimensional feature vector.
Baselines Our focus is on comparing our proposed 3 FG-SA
methods with [23], which achieves the best fine-grained SBIR
performance to date by employing a fine-tuned deep triplet
network. Our FG-SA alignment operates on pre-extracted
features and does not rely on triplet annotations, while deep
learning method [23] operates on raw images and requires
extensive triplet annotation.

Specifically, we evaluate the following cross-modal match-
ing baselines: (i) Triplet Deep learning, which is exactly
[23]. (ii) Dense-HOG + Our, where simple HOG features are
aligned using our proposed FG-SA, and then compared using
L2 distance. (iii) ISN Deep + Our, our FG-SA operates on
pre-extracted ISN Deep features as also benchmarked in [23].
(iv) GNT Deep + our, our FG-SA operates on pre-extracted
GoogleNet Triplet Deep features as proposed in [48].

The SBIR results on 912-dataset [47], 419-Shoe and 297-
Chair [23], 697-dataset (introduced here) and Sketchy [48] are
shown in Tables IV, V, VI, VII, respectively.
Comparison of the proposed three FG-SA methods We
first compare our three method variants introduced in Sec-
tion IV-C. As discussed earlier, one might expect that Method
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Fig. 7. Fine-grained SBIR qualitative results with and without Part Decomposition Examples of some top ranking retrieval results given a probe sketch.
Our part-aware method delivers sensible results, discriminating the fine-grained variations on a instance-level. Red-tick indicates ground-truth matching image
of the input sketch, which should be ranked as highly as possible. Part detection results of SS-DPM are shown using colour-coded bounding boxes.
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Fig. 8. Examples where humans fail to express a given image attribute when
sketching. Given an image, all three sketchers failed to express the shown
fine-grained attribute according to human annotations.

3 provides the strongest constraint (each positive pair closer
than alternative negative pairs) for accurate cross-modal
matching and should perform the best. However the results
on the first two datasets in Tables V and IV do not support
this, with Method 2 mostly performing best. This is because
the tighter constraint is harder to meet, and thus the metric
overfits to the training data while trying to meet it. In contrast,
on the largest 697-dataset in Table VI, we do see that Method
3 performs best and Method 2 (positive pairs closer than
negative pairs on average) is better than the Method 1 (positive
pairs close). This suggests that stronger constraints are indeed
effective, but only with sufficient training data.
Comparison against Deep Learning From the results we
can observe that: There is no clear winner on the 912 shoe
dataset (Table IV) – different outcomes at early and late
ranks), our methods are comparable or better than Deep Triplet
Ranking on the 419 shoe and 697 chair datasets (Tables V
and VI), and beating GN Triplet on the Sketchy database

(Tables VII). It is interesting to note that Dense-HOG features
tend to perform better than ISN features on chairs, both on the
297-chair dataset of [23] and our extended 697-chair dataset.
Upon close examination, we attribute this to (i) chair sketch-
photo pairs exhibit much better alignment on the whole, and
(ii) chair sketches are considerably better drawn than shoes
(also reflected by the genially better top-1 accuracy and close
to 100% performance on both chair datasets).
Annotation and Computational Cost Importantly, our
method only requires pair correspondence, and not the non-
scalable O(N3) triplet annotations need by [23]. Our FG-
SA methods are also significantly more efficient to train. For
example on the 419-shoe dataset [23]. It required 95 seconds,
628 seconds and 1, 154 seconds on average to train FG-SA
Methods 1-3 respectively on CPU (i5-4590 @ 3.30GHz),
compared to 9 hours on a Tesla-K80 GPU for [23].

VI. CONCLUSION

We investigated the practical problem of fine-grained
sketch-based image retrieval. Our first contribution was to
study the role of part-aware attributes. In doing so, we released
a new SBIR dataset of shoes, where the dataset acquisition
procedure was designed to closely resemble the realistic
application scenario: users sketching with their fingers on
a tablet some time delay after seeing a shoe. In particular,
we proposed to detect attributes at part-level to construct
a fine-grained semantic feature representation that not only
works independently of visual domain, but also tackles the
abstract and iconic nature of sketches. Our second contribution
addressed the image/sketch divergence at the level of low-level
features, by developing a fine-grained instance-level subspace
alignment framework which, for the first time, aligns the
modalities according to both domain-level and instance-level
constraints. This novel approach compares favourably to more
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expensive and complex deep learning approaches. Through
comparative analysis against other existing subspace learning
methods on fine-grained SBIR, we reinforced a conclusion
drawn in a recent work [39], that is, for fine-grained tasks,
pair-wise alignment is required. In the future, first we will
investigate further the effect of style in fine-grained SBIR, and
study automatic free-hand sketch synthesis from images [49],
[50], [51]. We also plan to apply the proposed instance-level
subspace alignment methods to other cross-modal matching
tasks where pair correspondences are thought, e.g., person re-
id [52], [53].
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