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Abstract

We study the problem of fine-grained sketch-based im-
age retrieval. By performing instance-level (rather than
category-level) retrieval, it embodies a timely and prac-
tical application, particularly with the ubiquitous avail-
ability of touchscreens. Three factors contribute to the
challenging nature of the problem: (i) free-hand sketches
are inherently abstract and iconic, making visual compar-
isons with photos more difficult, (ii) sketches and photos
are in two different visual domains, i.e. black and white
lines vs. color pixels, and (iii) fine-grained distinctions are
especially challenging when executed across domain and
abstraction-level. To address this, we propose to detect vi-
sual attributes at part-level, in order to build a new repre-
sentation that not only captures fine-grained characteristics
but also traverses across visual domains. More specifically,
(i) we propose a dataset with 304 photos and 912 sketches,
where each sketch and photo is annotated with its semantic
parts and associated part-level attributes, and with the help
of this dataset, we investigate (ii) how strongly-supervised
deformable part-based models can be learned that subse-
quently enable automatic detection of part-level attributes,
and (iii) a novel matching framework that synergistically
integrates low-level features, mid-level geometric structure
and high-level semantic attributes to boost retrieval per-
formance. Extensive experiments conducted on our new
dataset demonstrate value of the proposed method.

1. Introduction
Sketches are intuitive and descriptive. They are one of

the few means for non-experts to create visual content. As
a query modality, they offer a more natural way to provide
detailed visual cues than pure text. Closely coupled with
the proliferation of touch-screen devices and availability of
large scale free-hand sketch datasets [8], sketch-based im-
age retrieval (SBIR) has gained tremendous application po-
tential.

Traditional computer vision methods for SBIR mainly
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Figure 1. Conventional SBIR operates at category-level, but
fine-grained SBIR requires more scrutiny at subtle details on an
instance-level basis. We propose a part-aware learning approach
to train our semi-semantic representations based on a new large-
scale fine-grained SBIR dataset of shoes. (Best viewed in color.)

focus on category-level retrieval, where intra-category vari-
ations are neglected. This is not desirable, since if given
a specific shoe sketch (e.g., high-heel, toe-open) as input,
it would be pointless to retrieve an image that is indeed a
shoe, but with different part semantics (e.g., a flat running
shoe). Thus fine-grained SBIR is emerging as a way to go
beyond conventional category-level SBIR, and fully exploit
the detail that can be conveyed in sketches. By providing a
mode of interaction that is more expressive than the ubiq-
uitous browsing of textual categories, fine-grained SBIR is
more likely to underpin practical commercial adoption of
SBIR technology. Figure 1 contrasts our fine-grained SBIR
with traditional category-level SBIR systems.

Fine-grained SBIR is challenging due to: (i) free-hand
sketches are highly abstract and iconic, e.g., sketched ob-
jects do not accurately depict their real-world image coun-
terparts. (ii) sketches and photos are from inherently het-
erogeneous domains, e.g., sparse black line drawings with
white background versus dense color pixels, potentially
with background clutter. (iii) fine-grained correspondence
between sketches and images is difficult to establish es-
pecially given the abstract and cross-domain nature of the
problem. Over and above all, there is lack of a purpose built



fine-grained SBIR dataset to drive research, which is why
we contribute a new FG-SBIR dataset to the community.

There exist significant prior work [32, 4, 16, 15, 17, 23]
on retrieving images or 3d models based on sketches, typ-
ically with Bag Of Words (BOW) descriptors or advance-
ments thereof. Although BOW approaches are effective
and scalable, they are weak at distinguishing fine-grained
variations as they do not represent any semantic informa-
tion. Very recently, approaches to fine-grained SBIR have
included DPM-based part modeling in order to retrieve ob-
jects in specific poses [21]. However, for practical SBIR in
commercial applications, we are more interested in distin-
guishing subtly different object sub-categories rather than
different poses. In a related line of work, fine-grained at-
tributes have recently been used to help drive fine-grained
image retrieval by identifying subtle yet semantic properties
of images [7, 35]. Moreover, such attributes may provide a
route to bridge the sketch/photo modality gap, as they are
domain invariant if reliably detected (e.g., a high-heel shoe
is ‘high-heel’ regardless if depicted in a photo or sketch).
However, they suffer from being hard to predict due to spu-
rious correlations [18]. In this paper we bring together at-
tribute and part-centric modeling to decorrelate and better
predict attributes, as well as provide two complementary
views of the data to enhance matching.

We first define a taxonomy of 13 discriminative attributes
commonly possessed by shoes, and acquire a large fine-
grained SBIR dataset of free-hand shoe sketches with part-
level attribute annotations. Based on this, we propose a
part-aware SBIR framework that addresses the fine-grained
SBIR challenge by identifying discriminative attributes and
parts, and then building a synergistic representation based
on them. Specifically, we first train strongly-supervised
deformable part-based model (SS-DPM) to obtain seman-
tic localized regions, followed by low-level features (i.e.,
HOG) extraction, geometric part structure extraction (mid-
level) and semantic attribute prediction (high-level). We
then use canonical correlation analysis (CCA) to get a ro-
bust subspace integrating all three views as our final feature
representation. At retrieval time, we apply nearest neigh-
bor matching to retrieve images most similar to the probe
sketch. We demonstrate the superiority of our framework
on fine-grained SBIR through in-depth comprehensive and
comparative experiments.

The overall contributions of our work are:

• We propose a fine-grained SBIR shoe dataset with
free-hand human sketches and photos, as well as fine-
grained attribute annotations.

• We propose a part-aware paradigm that allows fine-
grained attribute detection.

• We propose a synergistic low-level + mid-level + high-
level feature representation that proves to be crucial to

improve the performance of fine-grained SBIR.

2. Related Work
2.1. Sketch-based image retrieval

Content-based Image Retrieval, a problem that has been
long studied by the computer vision community (see an ex-
cellent survey in [28]). Despite empowering various query
and interaction modes, the main research focus remains to
stay on the text-based queries. However, it is cumbersome
to textually describe visual appearance such as complex ob-
ject shape, and moreover it is imprecise due to demographic
variation in descriptions. Instead, a simple free-hand sketch
can speak for a “hundred” words without any language am-
biguity and provides a far more expressive means of image
search. Early approaches for sketch-based image retrieval
(SBIR) mainly focused on feature engineering. Despite
some success [9, 15], all assume pixel-level matching mak-
ing them highly sensitive to alignment (and in turn work
only with relatively accurate sketches). [16] conducted
comparative and comprehensive experiments by evaluating
traditional low-level feature descriptors (e.g., SIFT, HOG,
SSIM, Shape Context, etc.) performance on SBIR, which
demonstrated the cross-domain limitations of hand-crafted
state-of-the-art image-based descriptors.

In order to address scalability, Cao et al [4] propose an
edgel (edge pixel) structure to organize all database images.
Their approach heavily relies on an edgel dictionary for the
whole database, where each entry is represented by an edgel
and several orientations. They measure sketch-image pair
similarity by indexable oriented chamfer matching (IOCM),
which makes it vulnerable to scale or orientation variance.
Zhou et al [36] try to find the most salient part of an im-
age in order to localize the correct region under cluttered
background and do retrieval of a probe sketch based on this.
However, determining saliency is a very hard problem and
the accuracy of even the state-of-the-art saliency methods
in natural images is low [22]), thus liming its reliability in
practice.

To our knowledge, the only work that specifically tai-
lored for fine-grained SBIR is [21], which scores sketch-
image pair similarity in terms of four pose variations: view-
point, zoom, configuration and body feature. Then a DPM
[11] is employed as the representation to encode pose and
coarse appearance in each domain, followed by a graph
matching strategy for cross-domain pose correspondence.
However, their criteria is pose rather than object detail-
centric, and they lack a fine-grained SBIR dataset to validate
on, so the efficacy for real fine-grained SBIR is unclear.

2.2. From Retrieval to Fine-Grained Retrieval

There have been extensive literature [13, 14, 29, 33]
on category-level image retrieval, where they mostly em-
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Figure 2. (a) diagram of the proposed taxonomy of 13 part-aware attributes; different to conventional attributes defined at image-level, ours
are spatially clustered within four semantic parts of a shoe, (b) per-attribute retrieval result, where a leave-one-out strategy is implemented;
it shows each attribute is discriminative in its own right.

ploy image similarity frameworks. One way to build im-
age similarity models is to first extract features like SIFT
[24] and HOG [6], and then learn the image similarity mod-
els on top of these features, however, the performance is
largely limited by the representation power of hand-crafted
features. Another major drawback of traditional image re-
trieval is their inability to do instance-level retrieval, which
requires distinguishing subtle differences between images
of the same category. Yu et al. [35] for the first time ex-
plores fine-grained visual comparisons by applying a local
learning approach based on relative attributes [26], like “the
suspect is taller than him”, “the shoes I want to buy are
like these but more masculine”. Inspired by above, very
recently, Wang et al. [34] proposed a deep ranking model
that learns fine-grained image similarity directly from im-
ages via learning to rank with image triplets. Despite some
early success the problem remains largely unsolved, espe-
cially how they can be extended to work cross-domain as
for the case of SBIR.

2.3. Fine-grained Attributes

Describing objects by their attributes [3, 10, 20, 27] has
gained tremendous research attention recently, while com-
paratively little attention has been dedicated to the detailed
structure of objects, particularly from a semantic viewpoint.
Attributes capture information beyond the standard phrase-
ology of object categories, instances, and parts, where fine-
grained attributes further describe object parts with more
detail. To our knowledge, there are only a few single-
category datasets with fine-grained attribute annotations,
for example, datasets related to detailed descriptions of
birds [31], aircraft [30], and clothes [5]. We push this en-
velope by proposing a new dataset of fine-grained shoe at-
tributes, not only on images but sketches as well.

3. A Large Scale Fine-Grained SBIR Dataset

In this section, we describe the collection of our fine
grained shoe SBIR dataset with 304 images and 912 free-
hand human sketches. Each image has three sketches cor-
responding to various drawing styles. This dataset provides
a solid basis for all our learning tasks. Inspired by [8], we
propose following criteria for the free-hand sketches and its
corresponding image pairs collected in our dataset:

Exhaustive The images in our dataset cover most subcat-
egories of shoes commonly encountered in day life.

Discriminative The shoe itself is unique enough and pro-
vides enough visual cues to be differentiated from others.

Practical The sketches are drawn by non-experts using
their fingers on a touch screen, which resembles the real-
world situations when sketches are practically used.

3.1. Defining a taxonomy of fine-grained shoe at-
tributes

Attribute Discovery To identify a thorough list of fine-
grained attributes for shoes, we start by extracting some
from previous research on shoe images. Berg et al. [2]
report the eight most frequent words that people use to
describe a shoe, namely “front platform”, “sandal style
round”, “running shoe”, “clogs”, “high heel”, “great”,
“feminine” and “appeal”. Kovashka et al. [19] further
augment the list with another 10 relative attributes. It’s
noteworthy that the attributes they report are not particu-
larly fine-grained in terms of locality and granularity, when
compared with part-based ones defined in [30] for the cate-
gory of airplanes. Some are functionality descriptions (e.g.,
sporty) or pure aesthetics (e.g., shiny) which make them
fit to a typical attribute categorization paradigm. However,
they provide a starting point to enable us to collect a fine-



Figure 3. Representative sketch-photo pairs in our proposed fine-grained SBIR dataset, where each photo has three corresponding free-hand
sketches drawn by different people. They highlight the abstract and iconic nature of sketches and differences in drawing ability among
participants.

grained attribute inventory. We also mine the web (e.g.,
Amazon.com) and social media to find more key words
and hashtags that people use to describe shoes, particularly
those with higher degrees of locality and granularity. This
gives us an initial pool of thirty fine-grained attributes.

Attribute Selection and Validation To determine which
attributes are most suitable for our fine-grained SBIR task,
we follow the “comparison principle” [30]. An attribute is
considered informative only if it can be used to discriminate
similar objects by pinpointing differences between them.
This provides us two criteria for attribute selection (i) We
omit shape or color-based attributes inappropriate to free-
hand human sketches. (ii) We omit any attributes that jeop-
ardize the overall retrieval accuracy when encoding both
sketches and photos in terms of ground-truth attribute vec-
tors. The selection criteria above leave us with 13 fine-
grained shoe attributes, which we then cluster accordingly
to one of the four parts of a shoe they are semantically at-
tached to. Fig. 2 illustrates the selected attributes and their
leave-one-out validation.

Collecting images The images are collected from the
publicly available UT-Zap50K dataset [35] with 50,000 cat-
alog shoe images from Zappos.com. From this, we choose
a diverse set of 304 shoes from across all the subcategories,
paying attention to include multiple inner detail variations.

Collecting sketches using crowdsourcing The main dif-
ficulties with collecting multiple sketches per image are:
(i) ensuring sufficient diversity of sketching styles, and (ii)
quality control on the sketches. To address this we use a
crowdsourcing procedure, where each participant views an
images, and draws the corresponding sketch including fine-
grained object detail by recall. Multiple participants allow
us to obtain different sketching styles for each image. Fig-
ure 3 illustrates some of the divergent drawing styles. Our

sketches are distinguished from previous work by: (i) be-
ing finger-drawn on a tablet touch screen, which resembles
a real-world application, and (ii) being in fine-grained cor-
respondence to particular images.

Annotation With our finalized fine-grained SBIR dataset,
we again use crowdsourcing to annotate both fine-grained
attributes as well as parts which we will later use for
strongly-supervised DPM training. To ensure high quality
annotation and filter out bad workers, we randomly choose
a certain proportion of the annotations for auditing, and par-
ticipant’s error rates directly determine their pay.

4. Methodology
Our learning approach is based on augmenting low- and

mid-level feature representations with semantic attribute
predictions that help distinguish subtle-but-important de-
tails [5, 7] in a domain invariant way (Sec. 4.1). This is
then followed by enhancing these attributes to be part-aware
(Sec. 4.2), and then integrating all three views of the image
into a new robust representation (Sec. 4.3) for better fine-
grained SBIR.

4.1. Feature and attribute extraction

Low-level feature extraction Histogram of Oriented
Gradients (HOG) is extracted from shoes in both image and
sketch domain. HOG is a ubiquitous descriptor that de-
scribes gradient information in a local patch. We extract
HOG in a dense grid, and use it as a low-level sketch/photo
representation. HOG was previously shown to be the best
general-purpose feature representation for sketch [21, 16].

Learning an high-level attribute detection classifier
From our ontology of j = 1 . . . A semantic attributes
(Sec. 3.1), each training sketch/photo x in the dataset D
is paired with attribute annotation a, D = {xi,ai}Ni=1. For



each domain, and for each attribute j we then train a clas-
sifier aj(·) to predict the presence/absence of the attribute
using a binary support vector machine (SVM). Given the
trained classifiers for each attribute, the A dimensional at-
tribute representation for an sketch or image x is repre-
sented by stacking them as a(x) = [a1(x), . . . , aA(x)].

4.2. Part-aware fine-grained SBIR

Our part detection mechanism has two purposes: (i) to
generate a graph-model to encode the geometry of a shoe,
and (ii) to support part-aware attribute detection.

Strongly-supervised DPM (SS-DPM) Model Instead of
using the traditional DPM [11] where objects are repre-
sented by a coarse root HOG filter and several latent higher
resolution part filters, we adopt SS-DPM here [1]. SS-DPM
uses strong part-level supervision to improve the initialisa-
tion of the latent-SVM model parts rather than automatic
heuristics. At this stage, a mixture of components is learned
for each domain, which we denoted as Ls = {M c

i }Ui=1 for
images and Lp = {M c

j }Uj=1 for sketches. For each M c
i and

M c
j , we adopt the same feature learning and fusion proce-

dures in Sec. 4.1, but in a localized way. Unlike [21], who
use DPM on cross-domain pose correspondence and simi-
larity scoring via graph matching, here, we simply aim to
derive the shoe parts (bounding boxes), within which we
detect fine-grained attributes.

Mid-level shoe structure representation To construct a
more abstract and modality invariant representation based
on shoe structure, we first need to detect shoe landmarks,
which can be located by a strongly-supervised deformable
part-based model (Section 4.2). Then a bank of relative
coordinates derived from fully-connected graph model are
used to represent our shoe structure information. Specif-
ically, given L localized shoe landmarks (centre of the
bounding boxes), a total of s(x) = L×(L+1)

2 relative co-
ordinates could be calculated by pairwise L2 distances for
structure representation. This normally captures the dis-
tance between key features located and provides a novel
view to discriminate between shoes.

Part-Aware Attribute Detection Once individual parts
have been detected, these can be used to improve attribute
detection compared to the holistic procedure outlined in Sec
4.1. Specifically, each attribute is associated with a local-
ized shoe part (Fig 2), thus only the features from within
the window of the detected part are used to predict the pres-
ence of that attribute. This requires the attribute detector to
use the relevant cue and not inadvertently learn to detect ir-
relevant but correlated features from other parts. In this way
we achieve de-correlated attribute learning that generalizes
better at testing time, and in turn more accurate attribute
detection accuracy that improves consequent retrieval per-
formance.

4.3. Generating a combined representation

Three-view CCA With the availability of low-level fea-
tures, attributes and shoe parts, we introduce a three-view
CCA formulation to learn a new space that integrates all of
these cues. Let Xx be the (M + N) × d dimensional ma-
trix stacking the low-level feature representations x for all
images and sketches and Xa is a (M + N) × A dimen-
sional matrix stacking the attribute representations a(x) for
all images and sketches, and Xs be the (M + N) × s
dimensional matrix stacking the structural relative coordi-
nates s(x). Then we find the projection matrices Wx and
Wa and Ws that produce a single embedding [12] of these
three views:

min
W1,W2,W3

3∑
i,j=1

∥∥XiWi −XjWj

∥∥2
F

subject to WT
i ΣiiWi = I, wT

ikΣijwjl = 0,

i, j = 1, . . . , 3, i 6= j, k, l = 1, . . . , c, k 6= l

(1)

where Σij is the covariance between Xi and Xj and wik

is the kth column of Wi, and c is the dimensionality of the
desired CCA subspace. To better understand this objective
function, let us consider its three terms:

min
Wx,Wa,Ws

∥∥XxWx −XaWa

∥∥2
F

+∥∥XxWx −XsWs

∥∥2
F

+
∥∥XaWa −XsWs

∥∥2
F

(2)

The first term tries to align corresponding low-level features
and attributes, and the remaining two terms try to align with
our part-aware structures. We argue that this will prove
to provide a more robust and discriminative cross-domain
representation for our fine-grained SBIR learning task. To
solve this problem, we use the efficient generalized eigen-
value method of [12].
Using representation for fine-grained SBIR: After ob-
taining the estimated attributes a(x) and geometry s(x), we
project them into the embedding space: xWx, a(x)Wa,
s(x)Ws. Then concatenating all views to give our fi-
nal 3c dimensional representation: R(x) = [xWx,
a(x)Wa, s(x)Ws]. Once our new robust and domain invari-
ant representation is obtained for both sketches and images,
matching a sketch xs against a image dataset D = {xp

i }Ni=1

is performed by nearest neighbor with L2 distance,

i∗ = argmin
i
|Rs(xs)−Rp(xp

i )| (3)

Why Part-aware? Our goal is to learn attribute classifiers
that fire only when the corresponding semantic property is
present. In particular, we want them to generalize well even
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Figure 4. Why part-aware? We present some wrongly-detected attributes (red) when using whole image input, that have been corrected
by our part-aware approach. (e.g., sometime, a tiny raise on the heel part does not necessary mean a low-heel shoe, instead, it may just an
upward continuation of the sole part, which potentially makes it correlated with any attributes spatially in proximity of the shoe heels. Our
part-aware approach can learn this subtlety semantically.)

when: (i) human free-hand sketches vary in shapes, scales,
and width-height ratios. (ii) attribute co-occurrence patterns
may differ from what is observed in training. The intrinsic
pixel-oriented nature of SVM means it’s prone to learn the
wrong thing, even if it achieves high training accuracy, i.e.,
it may learn the properties that are correlated with the at-
tribute of interest, rather than the attribute itself; and thus
suffer if these correlations change at test time. In contrast,
our part-aware model helps to achieve de-correlation and
improve generalisation by detecting attributes on specific
corresponding parts (details in Fig 4).

5. Experiments
5.1. Experimental settings

Preprocessing We first perform simple preprocessing to
alleviate misalignment due to scale, aspect ratio, and cen-
tering. We downscale the height of the bounding boxes for
both sketches and images to a fixed value of pixels while
retaining their original aspect ratios. Then we locate the
downscaled sketches and images to the centre of a 128∗256
blank canvas with rest padded by background pixels.
Low-Level Features For holistic low-level feature repre-
sentation, we densely extract HOG on sketches and images
on a 16 ∗ 16 grid, resulting in 4068 dimensional descriptor.
We then use PCA to reduce HOG dimensions to 250. For
part-level features required for fine-grained attribute detec-
tion, we constraint each part to be placed within a 128*64
patch, and pad by background pixels before performing the
same feature extraction procedure as we do holistically.
SS-DPM training and detection Each SS-DPM is set to
4 mixture components and 4 parts per component, which in
turn will deliver six relative coordinates for our shoe struc-
tural information. Unlike [1], all shoes in our dataset all
share a uniform pose without partial occlusions. During de-
tection, we choose the SS-DPM detection with the largest
probability in each image and sketch. We use publicly avail-
able packages from [1] for full implementation with mi-

nor modifications. In Figure 6, we provide illustrations of
part detection results on a few sketches and images in our
dataset.
Training part-aware attribute detectors Using the 13
attribute taxonomy defined in Section 3.1, and the train-
ing procedure in Section 4.2, we produce a 13 dimensional
binary attribute vector for each photo and sketch in the
dataset.
Baselines (attribute detection): We compare against per-
formance of the conventional means of using holistic fea-
tures (Whole-Image), and using ground-truth part attributes
as input (Ground-Truth Part). To further prove that our
part-aware method somehow decorrelates the attributes, we
evaluate against the state-of-the-art attribute decorrelation
method introduced in [18], where they use semantic groups
to encourage in-group feature sharing and between-group
competition for features through a lasso multi-task learning
framework. We compare with two variants of their method
(i) similar to [18], when holistic image-wide features di-
vided into 6 regular grids are used (Weakly-Supervised
(WS)-Decor), and (ii) when ground-truth part annota-
tions are supplied to extract part-level features (Strongly-
Supervised (SS)-Decor). We also compare performance
of strongly-supervised DPM against the original weakly-
supervised DPM [11] which works without strong part an-
notations at training (Weakly-Supervised (WS)-DPM).
Baselines (fine-grained SBIR): We evaluate against
when singular feature representations are used: (i)
Part-HOG, where part-level HOG is employed, (ii)
Part-Attribute, where only automatically detected part-
aware attributes are utilized, and (iii) Part-Structure,
where geometric part structure alone is used to re-
trieve. We also adopt the state-of-the-art two-view CCA
method previously utilized to match facial sketches and
caricatures to mugshot photo [25]. We compare with
three pair-wise configurations to accommodate their
two-view setting: Part-HOG+Part-Attribute+2View-
CCA, Part-HOG+Part-Structure+2View-CCA and



Attribute Whole-Image WS-Decor [18] WS-DPM SS-Decor [18] Ours Ground-truth part

Round 90.33% 88.93% 90.96% 92.08% 93.92% 94.25%
Toe-open 90.33% 88.93% 90.96% 92.08% 93.92% 94.25%
Ornament or 65.45% 61.13% 66.39% 67.47% 70.32% 73.85%
brand on body
Shoelace 63.03% 65.38% 64.10% 64.87% 65.98% 70.89%
or ornament on vamp
Low heel 73.72% 70.74% 74.89% 73.11% 75.44% 77.25%
High heel 71.19% 77.60% 72.21% 78.90% 73.70% 76.72%
Pillar heel 82.64% 70.91% 82.50% 72.08% 85.13% 88.44%
Cone heel 63.71% 69.46% 64.11% 74.85% 67.53% 74.64%
Slender heel 82.76% 85.29% 84.02% 88.24% 86.54% 89.63%
Thick heel 88.24% 76.34% 88.89% 79.97% 91.38% 92.83%
Low boot 96.67% 90.94% 95.42% 95.82% 97.08% 98.04%
Middle boot 94.39% 87.91% 92.26% 91.67% 95.78% 96.92%
High boot 89.10% 88.98% 86.89% 91.41% 91.15% 93.23%
Average 80.89% 78.66% 81.05% 81.72% 83.68% 86.19%

Attribute Whole-Sketch WS-Decor [18] WS-DPM SS-Decor [18] Ours Ground-truth part

Round 80.80% 78.93% 80.14% 80.30% 81.22% 81.96%
Toe-open 80.80% 78.93% 80.14% 80.30% 81.22% 81.96%
Ornament or 54.91% 53.31% 56.81% 52.95% 60.12% 62.34%
brand on body
Shoelace 73.02% 66.90% 74.45% 70.96% 72.99% 73.89%
or ornament on vamp
Low heel 66.45% 63.20% 64.89% 64.21% 66.15% 74.29%
High heel 80.46% 79.86% 79.55% 81.24% 75.68% 83.29%
Pillar heel 69.86% 70.91% 67.89% 72.07% 76.00% 77.10%
Cone heel 59.79% 60.62% 60.12% 64.07% 63.10% 71.66%
Slender heel 78.51% 85.95% 76.87% 87.38% 79.71% 88.53%
Thick heel 69.93% 71.79% 65.21% 74.73% 70.60% 78.83%
Low boot 92.51% 87.49% 87.45% 87.70% 90.87% 94.04%
Middle boot 78.11% 77.74% 72.48% 79.65% 84.03% 85.51%
High boot 88.65% 86.32% 84.51% 88.98% 84.94% 90.32%
Average 74.91% 74.00% 73.12% 75.73% 75.89% 80.29%

Table 1. Attribute detection using our part-aware method and other previous state-of-the-art method On both image and sketch
domains our method generally performs best, where some attributes actually outperform SS-Decor. One exception is that on sketch heel
part, SS-Decor outperforms ours. Note however that SS-Decor required strong part annotation at testing time, whereas our SS-DPMs once
trained works without part annotation at testing.

Part-Attribute+Part-Structure+2View-CCA.

5.2. Attribute detection

In this section, we evaluate our attribute-detection per-
formance on both domains. In Table 1, we offer attribute
detection accuracy (ten times random three-fold) for each
of our sketch/image datasets. Overall, although many at-
tributes are quite subtle, the average accuracies in the range
74%-84% clearly demonstrate that many of them can be
reasonably reliably detected. More specifically, we can see
that (i) all part-aware methods outperform whole-image,
with ground-truth attributes offering the best performance,
this further justifies the positive contribution of part lo-
calization, (ii) our method outperforms the state-of-the-art
decorrelation method [18] on image and slightly on the
more challenging sketch domain; it is however noteworthy
that [18] required strong part annotations at testing, and our
strongly-supervised DPM approach only utilized part an-
notation during training, and (iv) strongly-supervised DPM
performs better than weakly-supervised alternative, again
highlighting the importance of accurate part localization.

5.3. Fine-grained SBIR performance evaluation

We next perform quantitative evaluation on fine-grained
SBIR. Given a probe sketch, we retrieve K images, and de-
fine a successful retrieval if there is a correct match within
those K images. The results are illustrated by CMC curve in
Fig 5, where we achieve an average of 52% @ K = 10, sig-
nificantly outperforming traditional hand-crafted low-level
features. In particular, we can observe that (i) singular fea-
ture representations are clustered at the bottom, with the
relatively sparse structural feature being the worst, (ii) part-
attribute alone is the best of all singular features with an
accuracy of 35.33% @ K = 10, which surprisingly out-
performs the part-hog+part-attribute CCA feature, and (iii)
our three-view CCA method offers the best performance of

Rank
3 4 5 6 7 8 9 10 11

F
in

e
-g

ra
in

e
d
 R

e
tr

ie
va

l A
cc

u
ra

cy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Part-Structure
Part-HOG
Part-Attribute
Part-HOG+Part-Structure+2View-CCA
Part-Attribute+Part-Structure+2View-CCA
Part-HOG+Part-Attribute+2View-CCA
Part-HOG+Part-Attribute+Part-Structure+3View-CCA
Ground-truth

Figure 5. CMC curves for the proposed fine-grained SBIR frame-
work, and comparisons with other baselines.

all, with a more than 10% gain over the best two-view CCA
method, and the closest to ground-truth retrieval using hu-
man attribute annotations (65.67% @ K = 10). In Fig 6,
we present qualitative evidence that our part-aware fine-
grained SBIR method can capture subtle variations across
domains and deliver satisfying performance, e.g., in row 5
our method achieves more relevant images than the whole
image approach by correctly matching the fine-grained de-
tails such as open vs closed heel, or high-heel vs platform.

5.4. Analysis on different drawing styles

As shown in Figure 3, different sketches completed by
different sketchers in our dataset have various levels of ab-
straction and deformation, or even different expressive in-
terpretation on image-correspondence details. Thus, in this
section, we present a pilot study on how diverse drawing
styles could eventually affect our fine-grained SBIR out-
come. More specifically, at dataset generation, we divided
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Figure 6. An illustration of fine-grained SBIR result with and without our proposed part-aware method Examples of some top
ranking retrieval results given a probe sketch. Our part-aware method delivers sensible results, discriminating the fine-grained variations
on a instance-level. Red-tick indicates ground-truth matching photo of the input sketch, which should be ranked as highly as possible. Part
detection results of Strongly-Supervised DPM are shown using colour-coded bounding boxes.

Group Drawer 1 Drawer 2 Drawer 3

No. 1 80% 70% 67%
No. 2 69% 74% 80%
No. 3 62% 54% 74%
No. 4 73% 65% 73%
No. 5 71% 79% 63%
No. 6 70% 75% 72%

Table 2. Fine-grained SBIR results given different drawing
styles. Drawing style can affect the retrieval results significantly.
This proves that our learning task is challenging due to the unre-
stricted non-expert free-hand sketches.

our participants into six groups, where each group is made
up of three individuals. Each group was given the same
set of images and draw a sketch for each images. Then
some other participants manually annotate the fine-grained
attributes that are present in each sketch and image. We
examine and explore the sketching style of different peo-
ple within each group through attribute-level SBIR, where
the higher the sketch quality, the better the retrieval result.
As can be seen in Table 2, the performance of fine-grained
SBIR can vary dramatically due to different drawing styles
across individuals. This result further highlights the chal-
lenging nature of the dataset and motivates future work to
be carried out.

6. Conclusion

We investigated the practical problem of fine-grained
sketch-based image retrieval (SBIR). For the first time, we
studied the role of part-aware attributes. In doing so, we
release a new SBIR dataset of shoes, where the dataset ac-
quisition procedure was designed to closely resemble the
realistic application scenario – users sketching with their
fingers on a tablet some time delay after seeing a shoe. In
particular, we proposed to detect attributes at part-level to
construct a fine-grained semantic feature representation that
not only works independently of visual domain, but also
tackles the abstract and iconic nature of sketches. We fur-
ther developed a three-view CCA space that captures low-
level, middle-level and high-level information in a syner-
gistic fashion. We demonstrated via extensive experiments
that our strongly-supervised attribute detection framework
can localize more accurate object parts hence outperforms
state-of-the-art alternatives. Fine-grained SBIR results on
the proposed dataset verified the effectiveness of part-aware
attributes, both when used alone and synergistically with
other features. In the future, we will investigate further
the effect of style in fine-grained SBIR and study means of
weakly-supervised part-level attribute detection and decor-
relation.
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